Abstract

Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgels' temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.