Abstract
The structure and functional properties of protein fibrils are closely related to environmental factors in fibrillation. Herein, soy protein isolate fibrils (SPIFs, 22 mg/mL) were prepared under acid-heating conditions in the presence of 100 mM metal ions (K+, Na+, Ca2+, Mg2+, and Fe3+). Except for Fe3+, fibrillation and subsequent larger fibril aggregates were promoted, ultimately leading to gel formation. Compared with K+ or Na+, the addition of Ca2+ or Mg2+ resulted in more organized SPIF structures with increased β-sheet contents and higher ThT fluorescence intensities. Furthermore, both of them resulted in longer fibrils with an average contour length of 700–800 nm, which significantly enhanced the storage modulus. However, the presence of Fe3+ accelerated protein hydrolysis and inhibited SPIF formation, resulting in samples consistently exhibited liquid behavior. These findings provide a foundation for understanding the influence of metal ions on regulating the fibrillation and gelling properties of SPIFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.