Abstract

In this article we present a novel method for studying the asymptotic behaviour, with order-sharp error estimates, of the resolvents of parameter-dependent operator families. The method is applied to the study of differential equations with rapidly oscillating coefficients in the context of second-order PDE systems and the Maxwell system. This produces a non-standard homogenisation result that is characterised by ‘fibre-wise’ homogenisation of the related Floquet-Bloch PDEs. These fibre-homogenised resolvents are shown to be asymptotically equivalent to a whole class of operator families, including those obtained by standard homogenisation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.