Abstract

This paper presents a model to predict local fibre angle change due to post-forming of [±60°]4 polyamide 6 carbon (CF/PA6) thermoplastic tubular structures. Fibre angles of the CF/PA6 tubes after forming are predicted based on the initial local fibre angles before forming within their bending zones. Four sets of [±60°]4 CF/PA6 tubes were uniformly heated to 220 °C and formed under isothermal conditions into 45°, 90°, 135° and 180° bends using a rotary draw bender with a bending ratio of 2. A model is derived to predict local post-forming fibre angle changes and validated by experimental fibre angle measurements taken both before and after forming with an optical measurement system. Additionally, micro computed tomography is performed to analyse post-formed tube geometries and determine post-forming strains. The fibre angle prediction model allows laminate mechanical analysis to be performed on post-formed tube, therefore enabling tube laminate design optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.