Abstract

We studied the effect of thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) on the expression of sarcoplasmic reticulum (SR) fast- and slow-type Ca(2+)-ATPase isoforms, SERCA1 and SERCA2a, respectively, and total SR Ca(2+)-ATPase activity in rat skeletal muscle. Cross sections and homogenates of soleus and extensor digitorum longus muscles from hypo-, eu-, and hyperthyroid rats were examined, and expression of Ca(2+)-ATPase isoforms in individual fibers was compared with expression of fast (MHC II) and slow (MHC I) myosin heavy chain isoforms. In both muscles, T3 induced a coordinated and full conversion to a fast-twitch phenotype in one-half of the fibers that were slow twitch in the absence of T3. The conversion was partial in the other one-half of the fibers, giving rise to a mixed phenotype. The stimulation by T3 of total SERCA expression in all fibers was reflected by increased SR Ca(2+)-ATPase activity. The time course of the T3-induced changes of SERCA isoform expression was examined 1-14 days after the start of daily T3 treatment of euthyroid rats. SERCA1 expression was stimulated by T3 at a pretranslational level in all fibers. SERCA2a mRNA expression was transiently stimulated and disappeared in a subset of fibers. In these fibers SR Ca(2+)-ATPase activity was high because of high SERCA1 protein levels. These data suggest that the ultimate downregulation of SERCA2a expression, which is always associated with high SR Ca(2+)-ATPase activities, occurs at a pretranslational level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.