Abstract
Abstract Fabrication of multidirectional continuous carbon and silicon carbide fiber reinforced ceramic matrix composites (CMC) by a new short time hybrid process was studied. This process is based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of silicon nitride powders into the fibrous preform by slurry impregnation and, finally, on the densification of the composite by liquid phase spark plasma sintering (LP-SPS). The homogeneous introduction of the ceramic charges into the multidirectional fiber preforms was realized by slurry impregnation from highly concentrated and well-dispersed aqueous colloid suspensions. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle. The composites manufactured are dense. Microstructural analyses were conducted to explain the mechanical properties achieved. One main important result of this study is that LP-SPS can be used in some hybrid processes to densify fiber reinforced CMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.