Abstract

The feasibility of manufacturing fiber-reinforced concretes of high workability through additions of high volumes of electric arc furnace steel slag is evaluated in this paper, using sustainable binders with ground granulated blast furnace slag and ladle furnace slag as a supplementary cementitious material. An extensive experimental plan is developed to test four (self-compacting and pumpable) concrete mixtures, some reinforced with 0.5% vol. of (metallic or synthetic) fibers, in both the fresh and the hardened state. Very specific mechanical aspects are examined, such as the evaluation of both longitudinal and transversal stress-strain compressive behavior, and the assessment of direct tensile strength through the “dog-bone” test. The results of testing this sustainable concrete design yielded suitable mechanical strengths, and good toughness, ductility and impact strength, among other properties. Good adhesion between the fibers and the cementitious matrix was also evident from the fiber pull-out test results. Finally, the overall results confirmed that the use of electric arc furnace steel slag can make a real contribution to construction-sector sustainability and that the mechanical behavior of these novel concretes meets the basic design requirements for use in real structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.