Abstract

A novel fiber optic pressure sensor system with self-compensation capability for harsh environment applications is reported. The system compensates for the fluctuation of source power and the variation of fiber losses by self-referencing the two channel outputs of a fiber optic extrinsic Fabry-Pérot interfrometric (EFPI) sensor probe. A novel sensor fabrication system based on the controlled thermal bonding method is also described. For the first time, high-performance fiber optic EFPI sensor probes can be fabricated in a controlled fashion with excellent mechanical strength and temperature stability to survive and operate in the high-pressure and high-temperature coexisting harsh environment. Using a single-mode fiber sensor probe and the prototype signal-processing unit, we demonstrate pressure measurement up to 8400 psi and achieved resolution of 0.005% (2=0.4 psi) at atmospheric pressure, repeatability of ±0.15% (±13 psi), and 25-h stability of 0.09% (7 psi). The system also shows excellent remote operation capability when tested by separating the sensor probe from its signal-processing unit at a distance of 6.4 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.