Abstract

Successful endodontic therapy requires total debridement as well as complete obturation of the root canal to the cemento-dentinal junction. The goal of this study was to investigate the feasibility of using quantitative fluorescence spectroscopy for the detection and localization of pathological dentin, pulpal remnants, and microorganisms within the root canal. Specific aims were to identify: 1) characteristic excitation/emission spectra for healthy dentin, decayed dentin, enamel, and pulp; 2) the potential of specific spectral data for differentiating between these tissues; and 3) the potential of spectral data for detecting the presence and identifying four common endodontic pathogens. Fluorescence spectra were determined in the tissues of permanent human teeth, extirpated healthy and necrotic pulps, and four endodontic pathogens. Excitation/emission spectra were collected at 366 nm, 405 nm, and 440 nm excitation. Marked differences in spectral signatures between the different tissues under investigation were observed. We postulate that the differences in fluorescence spectra of decayed vs. healthy dentin are due to the loss of mineralized tissue components and increased organic presence and water in these tissues. Pulpal tissue showed distinctly different fluorescence spectra from healthy and decayed dentin, providing a basis for differentiating between tissue categories. Each bacterial species demonstrated distinct spectral emission patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.