Abstract

The concept of $FG$- coupled fixed point introduced recently is a generalization of coupled fixed point introduced by Guo and Lakshmikantham. A point $(x,y)\in X\times X$ is said to be a coupled fixed point of the mapping $F: X\times X \rightarrow X$ if $F(x,y)=x$ and $F(y,x)=y$, where $X$ is a non empty set. In this paper, we introduce $FG$- coupled fixed point in cone metric spaces for the mappings $F:X\times Y \rightarrow X$ and $G:Y\times X\rightarrow Y$ and establish some $FG$- coupled fixed point theorems for various mappings such as contraction type mappings, Kannan type mappings and Chatterjea type mappings. All the theorems assure the uniqueness of $FG$- coupled fixed point. Our results generalize several results in literature, mainly the coupled fixed point theorems established by Sabetghadam et al. for various contraction type mappings. An example is provided to substantiate the main theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.