Abstract
In this paper, we survey progress on the Feynman operator calculus and path integral. We first develop an operator version of the Henstock–Kurzweil integral, construct the operator calculus and extend the Hille–Yosida theory. This shows that our approach is a natural extension of operator theory to the time-ordered setting. As an application, we unify the theory of time-dependent parabolic and hyperbolic evolution equations. Our theory is then reformulated as a sum over paths, providing a completely rigorous foundation for the Feynman path integral. Using our disentanglement approach, we extend the Trotter–Kato theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.