Abstract

As a compound analogue of black phosphorus, a new 2D semiconductor of SnS layers is proposed. Based on state-of-the-art theoretical calculations, we confirm that such 2D SnS layers are thermally and dynamically stable and can be mechanically exoliated from α-phase SnS bulk materials. The 2D SnS layer has an indirect band gap that can be tuned from 1.96 eV for the monolayer to 1.44 eV for a six-layer structure. Interestingly, the decrease of the band gap with increasing number of layers is not monotonic but shows an odd–even quantum confinement effect, because the interplay of spin–orbit coupling and lack of inversion symmetry in odd-numbered layer structures results in anisotropic spin splitting of the energy bands. It was also found that such 2D SnS layers show high in-plane anisotropy and high carrier mobility (tens of thousands of cm2 V–1 s–1) even superior to that of black phosphorus, which is dominated by electrons. With these intriguing electronic properties, such 2D SnS layers are expected to have ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.