Abstract

Polycystic ovary syndrome (PCOS) is a common form of anovulatory infertility with a strong hereditary component but no candidate genes have been found. The inheritance pattern may be due to in utero androgen programming on gene expression and mitochondria. Mitochondria are maternally inherited and alterations to mitochondria after fetal androgen exposure may explain one of the mechanisms of fetal programming in PCOS. Our aim was to investigate the role of excessive prenatal androgens in ovarian development by identifying how hyperandrogenemia affects gene expression and mitochondria in neonatal ovary. Pregnant dams were injected with dihydrotestosterone on days 16–18 of pregnancy. Day 0 ovaries were collected for gene expression and mitochondrial studies. RNAseq showed differential gene expressions which were related to mitochondrial dysfunction, fetal gonadal development, oocyte maturation, metabolism, angiogenesis, and PCOS. Top 20 up and downregulated genes were validated with qPCR and Western Blot. Transcriptional pathways involved in folliculogenesis and genes involved in ovarian and mitochondrial function were dysregulated. Further, DHT exposure altered mitochondrial ultrastructure and function by increasing mitochondrial oxygen consumption and decreasing mitochondrial efficiency with increased proton leak within the first day of life. Our data indicates that one path that leads to PCOS begins at birth and is programmed in utero by androgens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.