Abstract

This study aimed to assess the influence of experimental warming and fertilization on rice yield and paddy methane emissions. A free-air temperature increase system was used for the experimental warming treatment (ET), while the control treatment used ambient temperature (AC). Each treatment contained two fertilization strategies, (i) normal fertilization with N, P and K fertilizers (CN) and (ii) without N fertilizer input (CK). The yield was remarkably dictated by fertilization (p < 0.01), but not warming. Its value with CN treatment increased by 76.24% compared to CK. Also, the interactive effect of warming and fertilization on CH4 emissions was insignificant. The seasonal emissions from warming increased by 36.93% compared to AC, while the values under CN treatment increased by 79.92% compared to CK. Accordingly, the ET-CN treatment obtained the highest CH4 emissions (178.08 kg ha-1), notably higher than the other treatments. Also, the results showed that soil fertility is the main driver affecting CH4 emissions rather than soil microorganisms. Fertilization aggravates the increasing effect of warming on paddy methane emissions. It is a daunting task to optimize fertilization to ensure yield and reduce methane emissions amid global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.