Abstract

So-called shape memory alloys “remember” the shape they are processed into, and can return to that shape after being deformed by heat. A limitation for most metal-based shape memory alloys is the extent to which they can be deformed elastically. Tanaka et al. (p. [1488][1]; see the Perspective by [Ma and Karaman][2] ) demonstrate an iron-based alloy that shows much higher levels of superelastic strain, surpassing the performance of nickel-titanium alloys. In addition to high superelastic strain, this ferrous shape memory alloy has much higher strength than NiTi and copper-based shape memory alloys and, consequently, a high-energy absorption capability. These properties may allow shape memory alloys to be exploited as strain sensors or energy dampers. [1]: /lookup/doi/10.1126/science.1183169 [2]: /lookup/doi/10.1126/science.1186766

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.