Abstract
The ferromagnetic Mn–Al–C τ‐phase ( tetragonal structure) shows intrinsic potential to be developed as a permanent magnet; however, this phase is metastable and is easily decomposed to nonmagnetic stable phases, affecting negatively the magnetic properties. Giving the necessity to careful control of its synthesis, the use of a novel approach is investigated using electric current–assisted annealing to obtain pure τ‐phase samples. The temperature and electrical resistance of the samples are monitored during annealing and it is shown that the change in resistance can be used to probe the phase transformation. Upon increase of electric current density, the required temperature for the ferromagnetic phase formation is reduced, reaching a maximum shift of 140 °C at 45 A mm−2. Even though this noticeable shift is achieved, the magnetic properties are not affected showing coercivity of 0.13 T and magnetization of 90 Am2 kg−1, independently from the electric current density used during annealing. Microstructural investigation reveals the nucleation of the τ‐phase at the grain boundaries of the parent ε‐phase. In addition, the existence of twin boundaries upon nucleation and growth of the metastable phase for all evaluated annealing conditions is observed, resulting in similar extrinsic magnetic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.