Abstract

The performances of heterojunction-based electronic devices are extremely sensitive to the interfacial electronic band structure. Here we report a largely enhanced performance of photoelectrochemical (PEC) photoanodes by ferroelectric polarization-endowed band engineering on the basis of TiO2/BaTiO3 core/shell nanowires (NWs). Through a one-step hydrothermal process, a uniform, epitaxial, and spontaneously poled barium titanate (BTO) layer was created on single crystalline TiO2 NWs. Compared to pristine TiO2 NWs, the 5 nm BTO-coated TiO2 NWs achieved 67% photocurrent density enhancement. By numerically calculating the potential distribution across the TiO2/BTO/electrolyte heterojunction and systematically investigating the light absorption, charge injection and separation properties of TiO2 and TiO2/BTO NWs, the PEC performance gain was proved to be a result of the increased charge separation efficiency induced by the ferroelectric polarization of the BTO shell. The ferroelectric polarization could be switched by external electric field poling and yielded PEC performance gain or loss based on the direction of the polarization. This study evidence that the piezotronic effect (ferroelectric or piezoelectric potential-induced band structure engineering) holds great promises in improving the performance of PEC photoelectrodes in addition to chemistry and structure optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.