Abstract
We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of α- and β-phase PVDF was identified. Ferroelectric β-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallization of PVDF and, as a consequence, the roughness of blend films was found to decrease with increasing PMMA content. Using time-dependent 2D numerical simulations based on a phase-field model, we qualitatively reproduced the effect of PMMA on the crystallization rate and the spherulite shape of PVDF. The remnant polarization scaled with the degree of crystallinity of PVDF. The thermal stability of the polarization is directly related to the Curie temperature. We show that, at high temperature, the commodity ferroelectric PVDF:PMMA blends outperform the commonly employed specialty copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). © 2012 American Chemical Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.