Abstract

Gadolinium doped ZnO nanorods were grown by wet chemical method. Line broadening of each diffraction peak was studied to evaluate the crystallite size, lattice strain, stress and energy density. Crystallite size was estimated by Scherrer and Williamson-Hall methods. The size was found to be in good agreement with the results of transmission electron microscopy. As a result of Gadolinium doping, high remnant polarization (Pr = 0.29 μC/cm2) and coercive field (Ec = 16.41 kV/cm) were observed. The decrease in leakage current due to Gadolinium doping makes ZnO a remarkable candidate for ferroelectric capacitor. High ferroelectric phase transition temperature (Tc = 215 °C) and large piezoelectric coefficient (d33 = 45.49 pm/V) were observed which makes Gadolinium doped ZnO sample useful for high temperature non-volatile ferroelectric memory applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.