Abstract
In this paper, we propose a Ferroelectric Tunnel Junction (FTJ)-based true random number generator (TRNG) that utilizes the stochastic domain switching phenomenon in ferroelectric materials. Ferroelectrics are promising for extracting randomness owing to their innate switching entropy in the multi-domain state. The random numbers generated by the proposed TRNG are shown to pass all the NIST SP 800-22 tests. The robustness of the proposed TRNG is also validated at various temperature and process corners. Important metrics such as power, bit rate, and energy/bit are calculated. This is the first comprehensive work demonstrating a ferroelectric-based TRNG with all these metrics. Compared to state-of-the-art TRNGs using other emerging technologies, we can achieve a higher bit rate with lower power consumption. We also perform material-level optimization with different ferroelectric materials, and showcase the trade-off between the bit rate and the power consumption. The proposed TRNG shows high robustness and reliability, and thus has the potential for implementing a low power on-chip solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.