Abstract

The novel ferrite route was developed for synthesis of iron nanoparticles. Precursor Fe3O4+delta nanoparticles were synthesized by coprecipitation oxidation from aqueous solutions of xFeCl2 +(1-x)/FeCl3 (0lesxles1), which were reduced by hydrazine at 90degC. Under optimum conditions of x=0.66, the iron nanoparticles were 15plusmn3.7 nm in diameter and had a saturation magnetization of 110 emu/g. The nanoparticle yield was ca. 5 g/experiment, which is about ten times better than the ca. 0.4 g/experiment produced by the polyol-reduction method. Mini-emulsion copolymerization was used to encapsulate the iron nanoparticles in a copolymer of polystyrene and poly-glycidyl methacrylate that exhibits minimal nonspecific protein adsorption, thus suppressing biomolecular contamination. The polymer-coated iron beads were 80-120 nm in diameter and had a saturation magnetization of 51 emu/g, which is a value close to the 60 emu/g obtained when the core iron nanoparticles were synthesized by our previous polyol-reduction method

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.