Abstract

To specify electron exchanges involving Desulfovibrio desulfuricans Norway tetra-heme cytochrome c3, the chemical modification of arginine 73 residue, was performed. Biochemical and biophysical studies have shown that the modified cytochrome retains its ability to both interact and act as an electron carrier with its redox partners, ferredoxin and hydrogenase. Moreover, the chemical modification effects on the cytochrome c3 1H NMR spectrum were similar to that induced by the presence of ferredoxin. This suggests that arginine 73 is localized on the cytochrome c3 ferredoxin interacting site. The identification of heme 4, the closest heme to arginine 73, as the ferredoxin interacting heme helps us to hypothesize about the role of the three other hemes in the molecule. A structural hypothesis for an intramolecular electron transfer pathway, involving hemes 4, 3 and 1, is proposed on the basis of the crystal structures of D. vulgaris Miyazaki and D. desulfuricans Norway cytochromes c3. The unique role of some structural features (alpha helix, aromatic residues) intervening between the heme groups, is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.