Abstract

A series of polycrystalline samples of Y3M (M = Co, Ni, Rh, Pd, Ir, Pt), intermetallic binary compounds were synthesized by the arc-melting method. Powder x-ray diffraction (pXRD) confirmed the orthorhombic cementite-type crystal structure and allowed for the estimation of the lattice parameters. Physical properties were investigated by means of electrical resistivity and heat capacity measurements between 1.9 K and 300 K. All tested compounds show metallic-like behaviour with RRR values ranging from 1.3 to 8.3, and power-law temperature dependence of resistivity was observed, with . No superconductivity was detected above 1.9 K. The Debye temperature, estimated from the low temperature heat capacity fit, ranged from 180 K (Y3Pt) to 222 K (Y3Co). The highest value of the Sommerfeld coefficient γ was found for Y3Pd (19.5 mJ mol−1 K−2). The pXRD pattern of Y3Rh indicated the presence of Y5Rh2, a previously unreported Pd5B2-type phase, whose unit cell parameters were refined using the LeBail method. Density functional theory calculations were performed and theoretical results revealed strong enhancement of the measured electronic specific heat, which was 30%–100% larger than computed. Quadratic temperature dependence of resistivity and enhanced electronic specific heat indicated a Fermi-liquid behavior of electrons in these materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.