Abstract

Sensitive, on-site and multiple detection of mycotoxins is a vital early-warning tool to minimize food losses and protect human health and the environment. Although paper-based lateral flow immunoassay (LFIA) has been extensively applied in mycotoxins monitoring, low-cost, portable, ultrasensitive and quantitative detection is still a formidable challenge. Herein, a series of Fe-N-C single-atom nanozymes (SAzymes) were synthesized and systematic characterized. The optimal Fe-N-C SAzyme with highly efficient catalytic performance was successfully used as both label and catalyst in lateral flow immunoassays for mycotoxin detection. By taking advantage of the catalytic amplified system, the qualitative and quantitative detection can be easily and flexibly done via observing the test lines by naked eyes or a smartphone, with the limit of detections (LODs) of 2.8 and 13.9 pg mL−1 for AFB1 and FB1, which were respectively over 700- and 71,000-fold lower than the maximum limit set by the European Union. Besides, underlying catalytic mechanisms and the active sites of the Fe-N-C SAzyme are also investigated by DFT simulation. This work not only provides a promising detection strategy for the application of advanced SAzymes but also offers experimental and theoretical guidelines to understand the active centers of Fe-N-C SAzymes and the catalytic process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.