Abstract

We experimentally measure the kinetic energy and angular distributions of photoelectrons of <TEX>$N_2$</TEX> as a function of 410 nm femtosecond laser intensity by using velocity map imaging technique. The strong-field multiphoton ionization of molecules shares many of the characteristics with those of atoms. Electron kinetic energies are nearly independent of laser intensities. The independence suggests that the electron peaks in the photoelectron spectrum actually result from a two-step process, indicative of the occurrence of real population in the intermediate states. The relative amplitudes of electron peaks indicate that in the two-step process, nonresonant population transfer dominates for low intensities, while resonant population transfer dominates for higher intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.