Abstract

Femtosecond lasers have considerable advantages over conventional lasers for micromachining of transparent materials, and here we use these advantages to fabricate a new type of glass capillary tube with micro- and nanopatterns on the inner surface of the tube. In terms of femtosecond laser patterning, we focused on the polarization state of the femtosecond laser and found that the variation of polarization affected the performance of capillary tubes, especially capillary rise and contact angle. We subsequently confirmed that the number of micropatterns and the direction of nanoripples most greatly affected the capillary rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.