Abstract
New photonic techniques need to be developed to improve personalised medicine methods in tissue engineering. In the case of severe bone injuries, difficulties arise when creating platforms where cells required to be efficiently adhered. Femtosecond laser ablation appears as a versatile technique for modifying the surface of materials with high precision and neat outcomes. Thus, a strategy combining 3D printing of biopolymeric scaffolds and femtosecond laser ablation is proposed to design a device with enhanced material properties in terms of cell growth for bone tissue regeneration. Three different patterns were proposed, and it was proven that cell adhesion improvements rely on the pattern profile, assessing that grooved scaffold successfully increased cell adhesion and proliferation in comparison with micropitted samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.