Abstract

The B800-to-B850 energy transfer time in the purified B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1 is determined to be 0.7 ps at room temperature. The electronic state dynamics of the principal carotenoid of this species, spheroidene, are examined, both in vivo and in vitro, by direct femtosecond time-resolved experiments and by fluorescence emission yield studies. Evidence is presented which suggests that carotenoid-to-bacteriochlorophyll energy transfer may occur directly from the initially excited carotenoid S2 state, as well as from the carotenoid S1 state. Further support for this conjecture is obtained from calculations of energy transfer rates from the carotenoid S2 state. Previous measurements of in vivo carotenoid and B800 dynamics are discussed in light of the new results, and currently unresolved issues are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.