Abstract

An integrated inverter stage operating in the gigabit range at a static power dissipation of 100 µW was built for future use in LSI logic circuits. Planar gallium arsenide technology was employed using selective ion-implanted enhancement mode junction field-effect transistors (E-JFET) having 3-µm gate lengths. A nine-stage ring oscillator served as a test vehicle to assess the speed-power product for digital applications. A theoretical analysis shows the transistor operates during the switching transient in the saturation regime, notwithstanding steady-state operation in the linear regime. When the transistor is switched off, the transient response is governed by the load resistance and the input capacitance of the subsequent stage. Means of reducing the switching time by increasing the supply voltage, nonlinear load devices, an output buffer stage, and reduction of gate length and width are described. Directly coupled E-JFET logic does not require level shifting, and, therefore, offers advantages over depletion-mode gallium arsenide MESFET logic by reducing the number of circuit elements per gate. Projected gallium arsenide E-JFET LSI logic circuits will surpass silicon-based bipolar logic with respect to both speed and power, and n-channel silicon MOS logic with respect to speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.