Abstract

Proper placement of the prosthetic components is believed to be an important factor in successful total knee arthroplasty (TKA). Implant positioning errors have been associated with postoperative pain, suboptimal function, and inferior patient-reported outcome measures. The purpose of this study was to investigate the biomechanical effects of femoral component malrotation on quadriceps function and normal ambulation. For the investigation, publicly available data were used to create a validated forward-dynamic, patient-specific computer model. The incorporated data included medical imaging, gait laboratory measurements, knee loading information, electromyographic data, strength testing, and information from the surgical procedure. The ideal femoral component rotation was set to the surgical transepicondylar axis and walking simulations were subsequently performed with increasing degrees of internal and external rotation of the femoral component. The muscle force outputs were then recorded for the quadriceps musculature as a whole, as well as for the individual constituent muscles. The quadriceps work requirements during walking were then calculated for the different rotational simulations. The highest forces generated by the quadriceps were seen during single-limb stance phase as increasing degrees of femoral internal rotation produced proportional increases in quadriceps force requirements. The individual muscles of the quadriceps displayed different sensitivities to the rotational variations introduced into the simulations with the vastus lateralis showing the greatest changes with rotational positioning. Increasing degrees of internal rotation of femoral component were also seen to demand increasing quadriceps work to support normal ambulation. In conclusion, internal malrotation of the femoral component during TKA produces a mechanically disadvantaged state which is characterized by greater required quadriceps forces (especially the vastus lateralis) and greater quadriceps work to support normal ambulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.