Abstract

In the copper electro-refining process, short circuiting between the cathode and anode caused by nodulation has the largest impact on the loss of current efficiency. In order to improve current efficiency, it is critically important to study the mechanism of the growth of the nodule. In this study, the nodulation was modeled using the finite element method to simulate the growth of copper bumps attached to the cathode. By considering the scale of the electrodes and their pitch, the relationship between the height of the nodule and its growth rate is investigated. In particular, a threshold height of the nodule that determines whether the nodule will rapidly grow to come in contact with the adjacent anode is identified. By comparing the result of the simulation and the experiments, the effect of leveling additives and the generation of dendritic growth are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.