Abstract

In this paper, we present a numerical model for two-dimensional low-Mach-number flows of reactive ideal-gas mixtures based on the fundamental conservation equations in primitive variables. Chemical reaction is described by a detailed mechanism of elementary reactions, and detailed models for molecular transport and thermodynamics are taken into account. The equations are discretized by a finite-element method on unstructured grids using the well known Taylor–Hood element. A streamline-diffusion upwinding technique is used to avoid instabilities in convection-dominated regions of the flowfield. A fully operative local adaptive mesh-refinement procedure is used. As numerical examples we consider steadily propagating laminar flames in flat channels, which appear in a variety of shapes depending on the boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.