Abstract
BackgroundThe function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.MethodsTwo- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration.ResultsPartial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations.ConclusionResults of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.
Highlights
The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport
Computational model A finite element method (FEM) based approach was used as implemented in COMSOL Multiphysics 3.4 (COMSOL Inc., Burlington, MA)
FEMs represent a numerical technique designed to find approximate solutions of general partial differential equations (PDE) based problems and are well-suited for complex geometries or varying domains since they rely on 'discretization' of the problem, i.e., the geometry is partitioned into small units of a simple shape [36]
Summary
The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Type 1 (insulin-dependent or juvenile-onset) diabetes mellitus (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic β-cells and requiring continuous glucose monitoring and insulin treatment. Since transplantation of pancreatic islet cells can normalize metabolic control in a way that has been virtually impossible to achieve with exogenous insulin, it is being explored, in a selected cohort of patients, as an experimental T1D therapy [1,2]. Despite all the progress in islet transplantation and in the development of bioartificial pancreas-type devices [5], the three main critical issues that need to be solved still remain those related to biocompatibility, oxygen supply limitations, and prevention of long-term immune rejection [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.