Abstract

Sampled-data control requires both on-sample and intersample performance in high-precision mechatronic systems. The aim is to design a discrete-time linearly parameterized feedforward controller to improve both on-sample and intersample performance in a multi-modal motion system. The continuous-time performance is considered as state compatibility by a multirate zero-order-hold differentiator. The developed approach enables the linearly parameterized feedforward controller design for sampled-data systems with physically intuitive tuning parameters. The performance improvement is validated by comparing the developed approach with a conventional approach using a backward differentiator for a multi-modal motion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.