Abstract

A possible approach to handling the harmful side effects of an analgesic overdose, without losing its therapeutic potential, involves feedback regulated delivery of an antidote. For example, overdose of morphine causes hypoventilation, an inadequate ventilation to perform gas exchanges in lungs leading to increased CO2 concentration in the blood. Taking advantage of CO2 as a toxicity marker, a hydrogel-based delivery vehicle containing dimethylamino groups [poly(N,N-dimethylaminoethyl methacrylate) cross-linked by trimethylolpropane trimethacrylate] was designed. Stimulus controlled swelling of these hydrogels in naloxone delivery is discussed. A remarkable control over naloxone release was achieved against the concentration of the biomarker. The overall stimuli response of the gel could be enhanced further by encapsulating carbonic anhydrase, a metalloenzyme known to catalyze the reversible hydration of CO2. Thus, a feedback regulated drug delivery vehicle based on toxicity biomarker strategy was modeled successfully, which has the potential to mitigate risks associated with drug overdose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.