Abstract

Control systems for lab on chip devices require careful characterisation and design for optimal performance. Traditionally, this involves either extremely computationally expensive simulations or lengthy iteration of laboratory experiments, prototype design, and manufacture. In this paper, an efficient control simulation technique, valid for typical microchannels, Computed Interpolated Flow Hydrodynamics (CIFH), is described that is over 500 times faster than conventional time integration techniques. CIFH is a hybrid approach, utilising a combination of pre-computed flows and hydrodynamic equations and allows the efficient simulation of dynamic control systems for the transport of cells through micro-fluidic devices. The speed-ups achieved by using pre-computed CFD solutions mapped to an n-dimensional control parameter space, significantly accelerate the evaluation and improvement of control strategies and chip design. Here, control strategies for a naturally unstable device geometry, the microfluidic cross-slot, have been simulated and optimal parameters have been found for proposed devices capable of trapping and sorting cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.