Abstract

One of the challenges in the Internet of Things systems is the security of the critical data, for example, data used for intrusion detection. The paper research construction of an intrusion detection system that ensures the confidentiality of critical data at a given level of intrusion detection accuracy. For this goal, federated learning is used to train an intrusion detection model. Federated learning is a computational model for distributed machine learning that allows different collaborating entities to train one global model without sharing data. This paper considers the case when entities have data that are different in attributes. Authors believe that it is a common situation for the critical systems constructed using Internet of Things (IoT) technology, when industrial objects are monitored by different sets of sensors. To evaluate the applicability of the federated learning for this case, the authors developed an approach and an architecture of the intrusion detection system for vertically partitioned data that consider the principles of federated learning and conducted the series of experiments. To model vertically partitioned data, the authors used the Secure Water Treatment (SWaT) data set that describes the functioning of the water treatment facility. The conducted experiments demonstrate that the accuracy of the intrusion detection model trained using federated learning is compared with the accuracy of the intrusion detection model trained using the centralized machine learning model. However, the computational efficiency of the learning and inference process is currently extremely low. It is explained by the application of homomorphic encryption for input data protection from different data owners or data sources. This defines the necessity to elaborate techniques for generating attributes that could model horizontally partitioned data even for the cases when the collaborating entities share datasets that differ in their attributes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.