Abstract

Graph Convolutional Networks (GCN) proposed recently have achieved promising results on various graph learning tasks. Federated learning (FL) for GCN training is needed when learning from geo-distributed graph datasets. Existing FL paradigms are inefficient for geo-distributed GCN training since neighbour sampling across geo-locations will soon dominate the whole training process and consume large WAN bandwidth. We derive a practical federated graph learning algorithm, carefully striking the trade-off among GCN convergence error, wall-clock runtime, and neighbour sampling interval. Our analysis is divided into two cases according to the budget for neighbour sampling. In the unconstrained case, we obtain the optimal neighbour sampling interval, that achieves the best trade-off between convergence and runtime; in the constrained case, we show that determining the optimal sampling interval is actually an online problem and we propose a novel online algorithm with bounded competitive ratio to solve it. Combining the two cases, we propose a unified algorithm to decide the neighbour sampling interval in federated graph learning, and demonstrate its effectiveness with extensive simulation over graph datasets from real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.