Abstract

The efficient fermentation of hydrolyzed sugars from lignocellulosic biomass feedstock to ethanol remains a complex multi-parametric problem. Thus, in the present study, an advanced structured dynamic model for the simulation of the fermentative ethanol production from hydrolysate sugars is developed. The model is combined with a statistical experimental design to determine an optimal operating strategy that maximizes ethanol production and serves for the systematic evaluation of critical process variables. In particular, the effects of various operating conditions and feeding strategies on the dynamic behavior of batch and fed-batch fermentation processes are explored. The deviation from the desired product or the metabolic inhibition of ethanol production are related with the applied environmental conditions and substrate and product inhibition phenomena. The operating strategy, designed with the assistance of the mathematical tools proposed in this study, includes an exponential addition policy of substrate. This strategy is experimentally proved to enhance the final product concentration, raising the ethanol productivity to 2.27 g L−1 h−1 and the ethanol yield to 53.5% of the maximum theoretical value. Moreover, the simulated strategies were in excellent agreement with the experimental results obtained from the real process using low and high glucose initial concentration, under batch and fed-batch conditions, in both flask- and bioreactor-scale cultivations, proving the model's predictive and optimization capabilities. Further improvement of process performance is expected when combining the proposed dynamic model with advanced optimization algorithms to derive the optimal bioprocess operating strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.