Abstract

Currently, it is critical but a tricky point to develop economical, high-efficiency, and durable non-precious metal electrocatalysts towards oxygen reduction and oxygen evolution reaction (ORR/OER) in rechargeable Zn-air batteries. Herein, N, Mn-codoped three-dimensional (3D) fluffy porous carbon nanostructures encapsulating FeCo/FeCoP alloyed nanoparticles (FeCo/FeCoP@NMn-CNS) are prepared by one-step pyrolysis of the metal precursors and polyinosinic acid. The optimized hybrid nanocomposite (obtained at 800 °C, named as FeCo/FeCoP@NMn-CNS-800) exhibits outstanding catalytic performance in the alkaline electrolyte with a half-wave potential (E1/2) of 0.84 V for the ORR and an overpotential of 325 mV towards the OER at 10 mA cm−2. Impressively, the FeCo/FeCoP@NMn-CNS-800-assembled rechargeable Zn-air battery presents an open-circuit voltage of 1.522 V (vs. RHE), a peak power density of 135.0 mW cm−2, and long-term durability by charge-discharge cycling for 200 h, surpassing commercial Pt/C + RuO2 based counterpart. This work affords valuable guidelines for exploring advanced bifunctional ORR and OER catalysts in rational construction of high-quality Zn-air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.