Abstract
Fecobionics is a novel integrated technology for assessment of anorectal function. It is a defecatory test with simultaneous measurements of pressures, orientation, and device angle (a proxy of the anorectal angle). Furthermore, the latest Fecobionics prototypes measure diameters (shape) using impedance planimetry during evacuation of the device. The simultaneous measurement of multiple variables in the integrated test allows new metrics to be developed including more advanced novel defecation indices, enabling mechanistic insight in the defecation process at an unprecedented level in patients with anorectal disorders including patients suffering from obstructed defecation, fecal incontinence, and low anterior resection syndrome. The device has the consistency and shape of a normal stool (type 3–4 on the Bristol Stool Form Scale). Fecobionics has been validated on the bench and in animal studies and used in clinical trials to study defecation phenotypes in normal human subjects and patients with obstructed defecation, fecal incontinence, and low anterior resection syndrome after rectal cancer surgery. Subtypes have been defined, especially of patients with obstructed defecation. Furthermore, Fecobionics has been used to monitor biofeedback therapy in patients with fecal incontinence to predict the outcome of the therapy (responder versus non-responder). Most Fecobionics studies showed a closer correlation to symptoms as compared to current technologies for anorectal assessment. The present article outlines previous and ongoing work, and perspectives for future studies in proctology, including in physiological assessment of function, diagnostics, monitoring of therapy, and as a tool for biofeedback therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.