Abstract

Entity resolution is the process of determining whether two references to real-world objects refer to the same or different purposes. This study applies entity resolution on Twitter prostitution dataset based on features with the Regularized Logistic Regression training and determination of Active Learning on Dedupe and based on graphs using Neo4j and Node2Vec. This study found that maximum similarity is 1 when the number of features (personal, location and bio specifications) is complete. The minimum similarity is 0.025662627 when the amount of harmful training data. The most influencing similarity feature is the cellphone number with the lowest starting range from 0.997678459 to 0.999993523. The parameter - length of walk per source has the effect of achieving the best similarity accuracy reaching 71.4% (prediction 14 and yield 10).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.