Abstract

A comprehensive study of the crystal and electronic structures, thermodynamic, electrokinetic, energy, and magnetic properties of the semiconductive solid solution Lu1-xScxNiSb, x = 0 – 0.10, revealed the possibility of doping Sc atoms of different crystallographic sites depending on their concentration. This leads to the generation of structural defects of donor and/or acceptor nature and the appearance of the corresponding energy levels (bands) in the band gap єg. The ratio of ionized donors and acceptors (degree of compensation) determines the position of the Fermi level єF in Lu1-xScxNiSb. The dependence of the rate of generation of energy levels and the position of the Fermi level єF on the impurity concentration Sc, which determines the mechanism of electrical conductivity of Lu1-xScxNiSb, is established. The investigated Lu1-xScxNiSb solid solution is a promising thermoelectric material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.