Abstract

Feature subset selection is an important problem in knowledge discovery, not only for the insight gained from determining relevant modeling variables, but also for the improved understandability, scalability, and, possibly, accuracy of the resulting models. The purpose of this chapter is to provide a comprehensive analysis of feature selection via evolutionary search in supervised and unsupervised learning. To achieve this purpose, we first discuss a general framework for feature selection based on a new search algorithm, Evolutionary Local Selection Algorithm (ELSA). The search is formulated as a multi-objective optimization problem to examine the trade-off between the complexity of the generated solutions against their quality. ELSA considers multiple objectives efficiently while avoiding computationally expensive global comparison. We combine ELSA with Artificial Neural Networks (ANNs) and Expectation-Maximization (EM) algorithms for feature selection in supervised and unsupervised learning respectively. Further, we provide a new two-level evolutionary algorithm, Meta-Evolutionary Ensembles (MEE), where feature selection is used to promote the diversity among classifiers in the same ensemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.