Abstract
This paper aims to discover a suitable combination of contemporary feature selection techniques and robust prediction classifiers. As such, to examine the impact of the feature selection method on classifier performance, we use two Chinese and three other real-world credit scoring datasets. The utilized feature selection methods are the least absolute shrinkage and selection operator (LASSO), multivariate adaptive regression splines (MARS). In contrast, the examined classifiers are the classification and regression trees (CART), logistic regression (LR), artificial neural network (ANN), and support vector machines (SVM). Empirical findings confirm that LASSO's feature selection method, followed by robust classifier SVM, demonstrates remarkable improvement and outperforms other competitive classifiers. Moreover, ANN also offers improved accuracy with feature selection methods; LR only can improve classification efficiency through performing feature selection via LASSO. Nonetheless, CART does not provide any indication of improvement in any combination. The proposed credit scoring modeling strategy may use to develop policy, progressive ideas, operational guidelines for effective credit risk management of lending, and other financial institutions. The finding of this study has practical value, as to date, there is no consensus about the combination of feature selection method and prediction classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.