Abstract

DNA microarray technology has become a prospective tool for cancer classification. However, DNA microarray datasets typically have very large number of genes (usually more than tens of thousands) and less number of samples (often less than one hundred). This raises the issue of getting the most relevant genes prior to cancer classification. In this paper, we have proposed a two-phase feature selection method for cancer classification. This method selects a low-dimensional set of genes to classify biological samples of binary and multi-class cancers by integrating ReliefF with recursive binary gravitational search algorithm (RBGSA). The proposed RBGSA refines the gene space from a very coarse level to a fine-grained one at each recursive step of the algorithm without degrading the accuracy. We evaluate our method by comparing it with state-of-the-art methods on 11 benchmark microarray datasets of different cancer types. Comparison results show that our method selects only a small number of genes while yielding substantial improvements in accuracy over other methods. In particular, it achieved up to 100% classification accuracy for 7 out of 11 datasets with a very small size of gene subset (up to < 1.5%) for all 11 datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.