Abstract
We consider the optimal inference of spatially heterogeneous hydraulic conductivity and head fields based on three kinds of point measurements that may be available at monitoring wells: of head, permeability, and groundwater speed. We have developed a general, zonation-free technique for Monte Carlo (MC) study of field recovery problems, based on Karhunen-Loève (K-L) expansions of the unknown fields, whose coefficients are recovered by an analytical adjoint-state technique. This allows unbiased sampling from the space of all possible fields with a given correlation structure and efficient, automated gradient-descent calibration. The K-L basis functions have a straightforward notion of period, revealing the relationship between feature scale and reconstruction fidelity, and they have an a priori known spectrum, allowing for a non-subjective regularization term to be defined. We have performed automated MC calibration on over 1100 conductivity-head field pairs, employing a variety of point measurement geometries and quantified the mean-squared field reconstruction accuracy, both globally and as a function of feature scale. We present heuristics for feature scale identification, examine global reconstruction error, and explore the value added by both groundwater speed measurements and by two different types of regularization. We show that significant feature identification becomes possible as feature scale exceeds four times measurement spacing and identification reliability subsequently improves in a power law fashion with increasing feature scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.