Abstract

Many datasets, especially various historical medical data are incomplete. Various qualities of data can significantly hamper medical diagnosis and are bottlenecks of medical support systems. Nowadays, such systems are often used in medical diagnosis. Even great number of data can be unsuitable when data is imbalanced, missing or corrupted. In some cases these troubles can be overcome by machine learning algorithms designed for predictive modeling.Proposed approach was tested on real medical data and some benchmarks dataset form UCI repository. The liver fibrosis disease from a medical point of view is difficult to treatment and has a significant social and economic impact. Stages of liver fibrosis are diagnosed by clinical observation and evaluations, coupled with a so-called METAVIR rating scale. However, these methods may be insufficient, especially in the recognition of phase of the disease. This paper describes a newly developed algorithm to non-invasive fibrosis stage recognition using machine learning methods – a classification model based on feature projection k-NN classifier. This solution allows extracting data characteristics from the historical data which may be incomplete and may contain imbalance (unequal) sets of patients. Proposed novel solution is based on peripheral blood analysis without using any specialized biomarkers, and can be successfully included to medical diagnosis support systems and might be a powerful tool for effective estimation of liver fibrosis stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.