Abstract
The performance of video stabilization is dependent on the accuracy of global motion estimation between two successive frames. In this paper, we propose a novel method to estimate the global motion accurately using the classified background (BG) feature points (FPs). In the proposed method, global motion estimation and FP classification are jointly performed using both the FP correspondences and the global motion parameters of the previous frame. The experimental results show that video stabilization using the proposed method outperforms the conventional stabilization methods, especially when the moving foreground (FG) objects occupy a large part of the image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.