Abstract
The measurement of grape sugar content is an important index for classifying grapes based on their quality. Owing to the correlation between grape sugar content and appearance, non-destructive measurements are possible using computer vision and deep learning. This study investigates the quality classification of the Red Globe grape. The number of collected grapes in the range of the 15~16% measure is three times more than in the range of <14% or in the range of the >18% measure. This study presents a framework named feature normalization reweighting regression (FNRR) to address this imbalanced distribution of sugar content of the grape datasets. The experimental results show that the FNRR framework can measure the sugar content of a whole bunch of grapes with high accuracy using typical convolution neural networks and a visual transformer model. Specifically, the visual transformer model achieved the best accuracy with a balanced loss function, with the coefficient of determination R = 0.9599 and the root mean squared error RMSE = 0.3841%. The results show that the effect of the visual transformer model is better than that of the convolutional neural network. The research findings also indicate that the visual transformer model based on the proposed framework can accurately predict the sugar content of grapes, non-destructive evaluation of grape quality, and could provide reference values for grape harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.